Tunability of Auto Resonance Network

1g
V M Aparanji (https://orcid.org/0000-0001-8030-6779), Uday V
2 3
W ali (https://orcid.org/0000-0003-1920-9990),R Aparna (https://orcid.org/0000-
0001-7330-867X)

1Dept. of E& CE, Siddaganga Inst.of Technology, Tum akuru, Karnataka, India
2 Dept.of E&RCE, KLEDrMSS CET, Belagavi, Karnataka, India
8 Dept.of ISE, Siddaganga Inst.of Technology, Tumakuru, Karnataka, India

{vmal508,udaywali, raparna27}@ gm ail.com

Abstract.We present a new type of A rtificial Neural Network (ANN) called
Auto-Resonance Network (ARN) derived from synergistic control of biological
joints. The network can be tuned to any real valued input without any
degradation of learning rate. Neuronal density of the network is low and grow s
ata linear or low orderpolynomial rate with inputclassification. Inputcoverage
of the neuron can be tuned dynam ically to match properties of input data. ARN
can be used as a part of hierarchical structures to support deep learning

applications.

Keywords: Artificial Neural Network, Auto Resonance Network, Self

Organizing Maps, Adaptive Resonance Theory.

1 Introduction

Classical neural networks suffer from size and tem poral superposition, generally
called stability-plasticity dilem ma in A rtificial Neural Network (A NN) literature[l],
[2], [3]. Neuroscience studies describe these effects as the binding problem and
superposition catastrophe [4]. Som e researchers take this a step further and state that
the electrical oscillations in the biological sensory systems trigger the cells in a
sequence, effectively serializing certain recognition activity in time, adding a new
Degree of Freedom (D oF) to the biological recognition engine [5]. A s the neural cells
in a network do not increase over time, the size of the initial neural network has to be
large enough to accomm odate the likely size of know ledge that will be acquired over
time. Each learning experience has to bind to a subset of the existing neural
infrastructure. However, as the knowledge base increases, newer knowledge has to
superimpose on existing infrastructure, possibly fragmenting the existing subsets.
O1ld knowledge is replaced or distorted by new knowledge, effectively destabilizing
the established subsets. This may not always have a damaging effect but does

distort/refine old subsets.

Kohonen networks called the Self Organizing M aps (SOM) start with pre defined
set of nodes initialized to random weights [6]. As the input is applied, some of the

input nodes produce maximum output and one among them will be chosen as winner.

The key to Kohonen’s networks is that the neighbors of the winner node adjust their
weights towards that of the winner. Over period of time, repetition of this process
creates a neighborhood of nodes that recognize similar inputs. Each of such
neighborhoods represents one class of input. As the neighborhood is not constrained
to be convex, it should be possible to support nonlinear classification. If the number
of classes of inputs exceeds a certain num ber in relation to the total num ber of nodes
in the network, the neighborhoods have to split and merge to accommodate new
classes. T herefore, SOM s are subject to superposition catastrophe. N otice that they
do not suffer from the binding problem as data classes are associated with sets of
nodes.

On the other hand, neural networks based on Adaptive Resonance Theory (ART)
[1] start with very few or no cells at all and add cells to the network when an input set
cannot be recognized (classified). In these networks, a cell generates winning outp ut
w hen input matches its stored value. O ther cells will have lesser output. Input range
covered by a cell and the number of cells for a given range of values are both
dynamically optimizable. Therefore, ART networks are minimal in terms of number
of nodes required to build the network. Extensions of ART networks using real inputs
and outputs, called ART2 scale and translate the input before storing in short term
memory[1], [7]. However, the complexity of ART2 networks alters the simplicity
and elegance of ARTI1 to the extent that these networks lose their relation with
biological equivalents: A biological neuron would be simple, repetitive and
connected.

In the following sections, a new type of necural network called Auto Resonance
Network (ARN) is described. ARN can classify real valued multi-dim ensional input
and have an adjustable acceptance threshold (p) for each node in the network. These
networks can be used as generic data classifiers by adding node labeling method or a

neuronal layerand find applications in various arecas of artificial intelligence.

2 Auto Resonance Network (AR N)

Auto Resonance N etwork will have a single layer of several neuronal nodes, each
containing a pattern to match a particular input set. Each node has a specific stored
pattern that is different from other nodes. At the basic level, behavior of the netw ork
would be as follows: Input will be applied as a set, one set at a time. O utput layer
would consist of a single layer of nodes all of which are connected to all inputs. Each
node is tuned to recognize a specific pattern of input vector. Internal mem ory of the
node m ay have an exact or approximate or transformed version of input it matches.
W hen a new input is applied (i) one of the nodes is at resonance or (ii) some nodes are
near resonance or (iii) none of the nodes are in resonance. In the first case it is the
winner. In second case, the node with the highest output is selected as winner if the
output is above a selection threshold. In all other cases, there isno recognition. W hen
there is no recognition, a new node may be created such that it is tuned to match the
input. Success of this network depends on finding a suitable function that offers good

tunability and variable cover.

W hen a new node is appended to ARN, it is pre-tuned to resonate with current
input. We will illustrate the concept with a single inputnetwork. Resonance of a node
can be described using a simple equation

y, = x(1 - x) (1)

where, x is The input represented by a real number assumed to be normalized to a
range of {0... 1}. Equation (1) will yield a maximum value of 1/4 when the input
x = 1/2,i.e.,the node will resonate if the inputis 1/2. Therefore, we can use

y = 4(1 - x)x (2)
to normalize the resultto 1.1n order to set the resonance atany value of x_ € {0 .. 1},
we can scale the input such that

wx, = 1/2 orw = 1/(2x,) (3)

and calculate the output of the node as

y = 4% (1 - wx)wx (4)
The resonant weight w is computed when the node is inserted in the network and
remains largely unaltered as a memory impression of the input x_ present at the time

of creating the node.

y ¥ = (L-wx)wx

1 /| L \%s\}:jW - ul.m \\\

1777, SN\ G L

0.1 / %\ \ \0-4 \{5
SV

02

N H X1 X, XN

twork
P- patterns

(a) Single input (b) One node with (c) ARN Net
matching N-inputs |

Fig.1.Resonance curves forvarious x Fig.2.Auto Resonance Network structure

The chart in Fig. 1 shows the behavior of nodes tuned at various points of
resonance identified by x . Overall structure of ARN is shown in Fig. 2. In Fig. 2(a),
scaling of single input by the resonant weight and com putation of resonator output is
shown. This is a basic module of ARN. A node with N input nodes is shown in Fig.
2(b). The inputto a node consists of a vector

X = {x,,x,,. 2y}, x,efo..1},i=1.N (5)

For each of the inputs, output of each resonator module given by (2) are sum med
and norm alized as at the output of the node. A layer of ARN will have several such
nodes as shown in Fig. 2(c). Assuming that there are K nodes, each one is tuned to a
different input vector X |, _ . where t, is the time atw hich k-th node w as created. W e
can extend (2) to describe4output of a k-th node as

Ve = —Z20-wx) x), i= 1. N, k= 1.K (6)
N
where,w,, is the scaling factor for i-th input of k-th node. The resonant weight w;
represents the in-the-node impression of input x,,stored as memory in the node. Note

that x, is the i-th element of the input vector while x, represents the resonating input
1

x,for k-th node. This k-th node will produce maximum value of 1 when x, = — ,

2w

i = 1. N.InFig.2, theresonator function isindicated as d (1 — d)whered = wx.

ki

Tosummarize, each resonator corresponds to one inputof one node. Each node has

N inputs and same number of resonators. The output of a node is maximal when all

the resonators produce maximum output. Therefore, the resonant weight of a node is

expressed as W = 1/2X_. The resonant weights are calculated only once, when the

node is added to the network. There will be only one node that maximally matches
exact combination of inputs. For these reasons we call this network as Awuto

Resonance N etwork (ARN).

2.1 Envelop Functions

It can be seen from Fig. 1 that output of a resonating node decreases as a continuous
function of input on either side of input values. |If the output of a node is above a
threshold value the node is a winner. By reducing or increasing the threshold the
range of input values to which a node resonates can be adjusted. For example, if the
threshold is reduced, the range increases and vice versa. Set of all inputs when the
output of a node is above a threshold is called coverage of the node.

Coverage of k-th node can be expressed as

c, = X I(y, > pland (y, > y, Vi # k)} (7)

wherep is the threshold value.

W e may further note from Fig. 1 that coverage of area for each node is not same for
a given threshold. For exam ple the peak for X = 0.1 is significantly sharper than the
one at X = 0.2. We could set separate thresholds to individual nodes such that all
nodes have similar coverage. However, a better way to correct this situation is to use a
non-linear scaling of input. W e call these functions as envelop functions.

Envelop functions can provide several advantages. For exam ple, they can transform
unbound input x € R into bound region Ilike {0.. 1}. If the envelop function
modifies the input x_ = g(x) then, the resonant weights also should be scaled with

s

identical function. ;

W = (8)
4 2g(x,)
Vi = _lek‘g(xl) (1 - w,,g(x;)) (9)
N

Envelop functions stretch or com press a specific part of the inputrange in order to

exemplify an area of interest. Effect of some of these functions is shown in Fig.3.

Log Envelop Scaled Shifted Sigmoid envelop
—_ - —_
;o.z -F- ‘ : Eo.z
= h _ QN g
i’éo.l : ; s \\\ foa
> L Y O IR ‘,\,]\‘& -
" 02 04 06 08 ' 02 04 06 08
(@) w=1/(2 In(x)) (b) w=(1+ exp(-4(x-1)))/2

Fig.3.Effectofenvelop functions on classification.
A simple scaled log function is shown in Fig 3(a) uses:
g(x) = o Inigx) (10)

w hereo is scaling factor. By adjusting o we can effectively compensate for the non-

linear coverage of (4). Fig. 3(a) show s the effect of (10) on coverage with ¢ = 1. A

modified sigmoid function shown in Fig 3(b) exhibits a controllable linear coverage.

It uses an envelope function
1

g(x) = —— (11)
(1+e-°(x-1)y

A value of ¢ = 4 is used for illustration. It is clear that envelop functions can reduce

the non-uniform coverage across the inputrange.

2.2 Extending the Input Range

Though accepting input in the limited range of {0... 1} need not be a limitation, it
would be convenient if there are other functions that provide a larger input range yet
m aintain the resonance property. Interestingly, there are many other monotonic
functions to implement such resonance and build an ARN. A generic approach would
be to define an additive inverse of the function over a range and m ultiply the two to
get a resonance function. O ne such simple function is the difference function given
by (M ki — xi) such that
ye = 1+ 3, (M, - x)(x;— M ;) (12)

whereM is the memory copy of the tuned input.

Another good candidate is the Scaled and Shifted Sigmoid Function (3SF) given

below : i
ye = - (13)
(14e-9Gx-M)y
will map a real number in the range of — oo :0 to a monotonically increasing value in
the range 0:1. Interestingly, the function has a value of 0.5at x = M. Therefore, we
could replace w ,;x; in (4) with this function. It may be noted that (1 — y_) can be

casily computed as .

Ys- = (14)

(1+e0(x= M)y

Therefore, for N=1, we can rewrite (2) as

. I |

(1+e—a(x—M)) (]+ec(X*M))

The sigmoid nature of this curve fits well with a physical neuron activation which
show s saturation as the input increases, rather than growing monotonically. Equation
(15) allows a node to be set to resonate at anyx; € R. Note that M can be used to
select the point of resonance while o can be used to control the tuning and hence
coverage of the node as shown in Fig 4(a) and (b) respectively. E quation (15)
provides a generalized function for implementing ARN nodes, albeit with increased
complexity. The tradeoff between complexity versus flexibility can tilt towards (4) or

(15) depending on end use.

S
o

0.1

05 1 L5 2 25 [

(a) Shifted Sigmoid Resonators (b) Tunability of sigmoid resonator

Fig. 4.Tunability of ARN using (15).

2.3 Tuning the nodes and coverage

Coverage of a node acts like noise margin by providing near maximal output when
the input is close to the resonating value. Therefore, each node can recognize noisy
input if it is within the coverage area. Coverage of the node can vary dynamically.
Node may slowly shift to a different tuning point depending on the statistical
properties of incoming data but stays close to the original tuned location.

Controlling the quality of resonance as shown in Fig. 4(b) can be used to sharpen
the performance of ARN nodes. For example, if a node receives exactly the same
input repeatedly, we can increase its sharpness by increasing o. On the other hand, if
the input value varies around the resonance value but within a threshold, we can
reduce the value ofcto increase its coverage. A simple relation that can be used to
tune the resonance is given by,

S(ns1y)y = O, + mxf/(1 = v) (16)

where,n is learning rate, k is a proportionality constant related to f statistical
frequency, number of times the node matched the input and v is related to signal
variance. T herefore, this equation provides basis for reinforcem ent learning on ARN
nodes.

Stable nodes can undergo further tuning to increase or decrease the area covered by
the nodes. This can be achieved by varying the selection threshold or the o value

associated with the node. This requires that the nodes com pute statistical mom ents as

they are accessed. For a node described by (15), and knowing that y = 1and
assuming x = 0,we can write the value of x for threshold of y = p as,
4 1
p= "{ } (17)

N (1+e " %)(1+e%)

w hich gives an expression for coverage of an ARN node as a function of threshold

and tuning factor. Eqn. (1 7) can be rewritten as

1 2

-1
xp=_cosh (—- 1) (18)
o N p

which gives the coverage of an ARN node for various values of threshold and scale

factor around the peak value.

2.4 Typesof ARN Nodes

Typically, ARN nodes are created when an input does not produce resonance in
existing nodes and the expected value of output is known. Such nodes have a well
defined point of resonance, output mapping and adjustable coverage. W e will call
these as Type-1 nodes. Additional nodes can be created in absence of input by
interpolating properties derived from Type-1 nodes. The output and associated data
can be estimated as a perturbation of values of Type-1 nodes or interpolated using

piecew ise linear or other suitable approxim ation. W e will call them as Type-2 nodes.

3 Results

ARN can perform real-world input classification. Figures5 and 6 show the Pattern
classification using scaled shifted sigm oid envelop function for different thresholds.
Each bubble indicates an input. Each color represents a node. |If a node resonates on
application of an input it is represented by the color of resonating node and shown at
the location specified by input. If there is no resonating node, then the network is not
resonating. In such a case a new node is created and appended to existing network.
In other words, a new node is added when maximum output value of all nodes in the
recognition layer is below the threshold. The node is assigned a color from a fixed
list of colors. Therefore, color of the node depends on the order in which an input
arrives during training and m ay vary from run to run. Group of inputs that drive the
same node towards resonance (represented by same color) represent the coverage of
the node. Increasing the threshold from 0.7 to 0.9 has increased the num ber of output

nodes.

~
0
Inp:

ut x

= Input x
(b) Threshold = 0.9

-
(a) Threshold = 0.7
Fig.5.2D Pattern classification for different thresholds.

o % <@ ° ?"qé..gb:g: £

.* e Py o o
ik L

F A =
o oo o
%0 ©® g g0%° ¥
—* Input x
(a) Threshold=0.7 = Input x

(b) Threshold = 0.9
Fig. 6.3D Pattern classification for different thresholds

Deep learning methods for different applications are reported in [8]. It is possible to
use several of the existing types of neural networks discussed in [9], [10] for path
planning of robotic motion. A hierarchical network for path planning built using
ARN hasbeen reported in [11],[12].

4 Conclusions

The sparseness of ARN and the simplicity of resonance equations can make ARN
suitable for implem entations in embedded system s.An important advantage of ARN is
ease of control over coverage and sparse node assignment. Itisobviousthatthe order

in which input is applied has a strong effect on how the ARN network gets created.

But nodes that are responsible for a specific output can be identified. The network
can be refined by successively applying new data that covers the labeled data class to
increase the accuracy of classification. Therefore, it is easy to see how the network
has interpreted the data. A single layer ARN can classify convex data sets and
therefore require labeling at higher levels of hierarchy in a typical deep learning
neural network. ARN can be used in lower levels of such structures to provide data
classification. Efforts are on the way to use this structure in various areas of current

research.

References

1. Stephen Grossherg (1987) Competative Learning — From Interactive to Action to Adaptive
Resonance, Cognitive Science 11, pp 23-63

2. C. von der Malsbhurg (1987) Synaptic Plasticity As Basis Of Brain Organization, The
Neuraland MolecularBases of Learning, John Wiley & Sons Limited,pp 1-24

3. Christoph von der Malsburg (1999) The W hat and W hy of Binding, The Modeler’s
Perspective, Open Archive, Elsevier, Vol 254, Iss.1,pp. 95-104

4. Thomas Burwick (2006) Oscillatory Networks: Pattern Recognition without a
Superposition Catastrophe, Neural Computation,Vol. 18, Issue.2,pp.356-380

5. Valerie Gray Hardcastle (1996) The Binding Problem and Neurobiological Oscillations,
Chapter. 4, Towards a Science of Consiousness, First Tuscon Discussions and Debates, Ed.
Stuart R. Hameroff, Alfred W. Kaszniak, Alwyn C. Scott, A Bradford book, The MIT
Press, Cambridge, M assachusets

6. T Kohonen (1990) The Self-organizing Map, Invited paper, Proceedings of the IEEE, Vol
78, No 9,pp 1464-1480

7. S. Hochreiter and J Schmidhuber(1997) The Long Short-Term Memory, Neural
Computation, Vol 9, No.8,pp.1735-1780

8. He, H.,, McGinnity, T.M ., Coleman, S., Gardiner B.(2014) Linguistic Decision M aking for
Robot Route Learning, IEEE Trans. Neural Networks And Learning Systems, Vol. 25, No.
1:203-215

9. Aparanji, V.M., Wali, U.V., Aparna, R.(2016) A Novel Neural Network Structure for
M otion Control in Joints, ICEECCOT Mysore, 227-232, also available from IEEE Xplore
digital library http://ieeexplore.ieee.org/document/7955220/

10. Aparanji, V.M., Wali, U.V., Aparna, R. (2017) Robotic Motion Control using Machine
Learning Techniques, 6th IEEE International Conference on Communication and Signal
Processing, Melmaravattur, (ICCSP 2017) 1241-1245, also available from IEEE Xplore
digital library

11. Aparanji, V.M., Wali, U.V. Aparna, R. (2017) Automated Path Search and Optimization of
Robotic Motion Using Hybrid ART-SOM Neural Networks, International Conference on
Recent Advancement in Computer and Communication, Bhopal, (ICRAC-2017), Springer
LNNS, 415-423, W eb page Available at https://doi.org/10.1007/978-981-10-8198-9 43

12. Aparanji, V.M., Wali, U.V., Aparna, R. (2018) Robotic Motion Control using Machine
Learning Techniques, International Conference on Conference on Cognitive Computing &
Information Processing, Bangalore, (CCIP 2017) Springer CCIS801, 386-394, Web page
Available atdoi.org/10.1007/978-981-10-9059-2_34,Springer CCIS, /doi.org/10.1007/978 -
981-10-9059-2_34,pp., 2018

https://doi.org/10.1007/978-981-10-8198-9_43

